Juvenile Salmon Usage of Nearshore Habitats along City of Seattle Marine Shorelines

Jason Toft

Wetland Ecosystem Team
School of Aquatic and Fishery Sciences
University of Washington
Seattle, WA

Charles Simenstad
Jeff Cordell
Lia Stamatiou

Funded by the Seattle Public Utilities
Department

Main Objective:

Quantify the abundance and behavior of juvenile salmonids and other fishes directly along marine shoreline habitat types.

Sampling Methods: High tides 5/12 - 8/1/03

Spring Tides: Enclosure nets and snorkeling - sand, cobble, riprap

Neap Tides: Snorkeling - all sites

Enclosure Nets (n=48):

- Samples entire water column
- Minimal problems with obstacles on substrate
- Holds fish for 2.75 hours, good for fish diet analysis
- Mesh size not good for small forage and larval fish
- Time and labor intensive Snorkeling (n=442):
- Fish not captured
- Dependent on water clarity
- Onsite specific behavior and location patterns
- Good at small forage/larval fish and rare fish
- Not so good at juvenile flatfish
- Ease of replication

Pros and Cons

All Results are PRELIMINARY!:

First detail fish densities from above 3 habitat types (modifications just to intertidal), then include the 2 below (modifications extend into subtidal).

Between cobble beaches, sand beaches, and rip-rap that ends at the high intertidal, we see minimal differences - all in bottom fishes.

Enclosure Nets: Flatfish (juv. English Sole) at Sand Beaches

Between cobble beaches, sand beaches, and rip-rap that ends at the high intertidal, we see minimal differences all in bottom fishes.

Snorkeling: ↑ Crabs at Cobble Beaches, ↑ Sculpins at Rip-Rap

Less Abundant Fish

When shoreline modifications extend into the subtidal, we see more differences - in pelagic fishes.

l,

Snorkeling: ↑ Overall at Overwater and Deep Rip-Rap, ↑ Juvenile Salmonids at Overwater, ↑ Surfperches at Deep Rip-Rap

When shoreline modifications extend into the subtidal, we see more differences - in pelagic fishes.

Snorkeling: Other Nearshore Fishes and Gunnels at Deep Rip-Rap

Salmon Densities and School Sizes:

When shoreline modifications extend into the subtidal, we see differences in juvenile salmonids.

Snorkeling: Juvenile Salmonid species groupings at Overwater and Deep Rip-Rap, also greater school sizes at Overwater (numbers above bars)

Salmon Locations in Water Column:

Deep Rip-Rap and Overwater Structures can affect positions.

Fish Location:

Juvenile salmonids found 70% > 1m away from edge, or 30% at edge, rare underneath Overwater Structures.

Habitat Type	Average Transect Distance from Shore (m)	Average Water Depth at Fish (m)	Average Secchi Depth (m)	Surface Salinity (ppt)
Cobble Beach	17.2 a	1.6 a	4.3 a	28.7 a
Sand Beach	12.9 b	1.7 a	4.8 ab	28.7 a
Rip-Rap	7.7 c	1.7 a	4.7 a	28.8 a
Deep Rip-Rap Overwater	4.8 d	2.4 b	5.9 c	27.5 a
Structure	3.4 d	4.4 °	5.4 bc	23.7 b

Habitat Measurements:

Shoreline modifications truncate the shallow water zone, gradual slope is lost. Pelagic fish that are typically spread-out along a large area may be forced to inhabit deep water directly along shore.

Diet Analysis:

Gastric lavage of juvenile chinook shows less terrestrial/riparian input (insects) at sites with retaining structures at intertidal or supratidal.

Salmon Behaviors:

Mostly schooling or swimming away. Fish are feeding on neuston at modified habitats, but getting less terrestrial input = limited.

Prey Resources:

Unretained shorelines have a greater input of terrestrial insects into the diets of juvenile chinook salmon.

Timing and Size:

- As compared to Lake Washington: juvenile chinook avoid armored banks (Roger Tabor).
- C S VV CAPUTE

- Juvenile chinook are larger and more pelagic in marine waters, less dependent on shallow water (Casey Rice).
- Differences are related more to indirect rather than direct effects of shoreline modifications, such as changes in water depth, substrate, and shoreline vegetation.

Concluding Remarks:

- Shoreline modifications have the greatest effect on marine nearshore fish communities when they extend from the supratidal through the subtidal.
- Cumulative effects could be important, as 84-97% of the shoreline is modified by retaining structures.

Future Research:

- Further examine the effects of shoreline modifications on ecological communities in regard to bank type, tidal height, and salinity regimes.
- Look at landscape level patterns, especially in areas with high degrees of alteration.
- Investigate specific characteristics of Overwater Structures, such as density, size, distance extending from shore, height above water, etc.

<u>e-mail</u>: tofty@u.washington.edu

Pilot Study Report #301: www.fish.washington.edu/Publications/frireps.html

Final Report: due March 30, 2004

Ongoing Research:

- 1. Ferry Terminals
- 2. Monitoring of Salmon Bay Natural Area

<u>Thanks</u>: Funding by Seattle Public Utilities Department (Judith Noble, Gail Arnold Coburn, Julie Hall, Keith Kurko, Ed Connor, Maggie Glowacki, Albert Ponio); Casey Rice for fish permits; stellar fieldcrew (Lia Stamatiou, Carl Young, Danielle Potter, Katie Dodd, Trina Miller, Mike Cooksey, Kathryn Sobocinski, Mark Stamey); Scott Wilson and The North Beach Club for beach access.

